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The dynamics of charge transfer from a photoexcited donor to an acceptor coupled through a bridge is
investigated by using a correlation-function approach in Liouville space that takes into account solvent dynamics
with an arbitrary distribution of time scales. The time- and frequency-resolved fluorescence spectrum from
the acceptor is used to probe the scaling of the ET rate with bridge size. The crossover between the coherent
tunneling (transfer) and the incoherent sequential (transport) regimes and its implications on the nature of ET
processes in DNA are discussed.

I. Introduction

Many important chemical and biological processes involve
long-range transfer of energy or charge carriers (electrons and
holes). Intense experimental and theoretical effort has been
devoted to exploring how the transfer rate depends on the nature
of the bridge connecting the donor and the acceptor.1-6 Several
recent experiments have focused on electron transfer (ET) in
DNA,7-13 which is involved in DNA damage and repair
mechanisms.14 Electron and energy transport through DNA is
used in sequence-specific DNA probes currently being devel-
oped.15 It has long been recognized that charge transfer in a
donor/bridge/acceptor system may proceed in two distinct
mechanisms. When the bridge energy is much higher than the
donor and acceptor, its role is simply to mediate the coupling
VDA between them. The electron tunnels from the donor to the
acceptor, and the bridge population is negligible at all times.
This is known as the superexchange mechanism. A perturbative
calculation of the electron tunneling matrix elementVDA was
first made by McConnell.16 In the opposite limit when the
donnor/acceptor and bridge energies are closer than∼kT, the
bridge acts as a quantum wire and the electron hops through
the bridge. This sequential electron transport mechanism has
been studied extensively in, for example, doped polymers.17VDA
decreases exponentially with the distanceRbetween the donor
and the acceptor,∼exp(-âR/2), and the resulting ET ratekET
is proportional to exp(-âR). The value of the exponentâ for
ET in DNA is controversial, with experimental estimates varying
between 0.2 Å-1 7,8 and 0.9 Å-1.9,10,13 ET rate of 1.6× 106

s-1 has been reported for an eight-base-pair bridge with donor-
acceptor separation of 21 Å.13 A 2.5× 106 s-1 rate was found
in a different system (six base pairs, 17-Å separation).9,10 These
relatively slow rates suggest an exponentâ ∼ 1.2-1.6 Å-1,
similar to that found in proteins. Recent calculations ofVDA
for ET in DNA using the semiemperical complete neglect of
differential overlap (CNDO) method18 and neglecting dynamical
effects of nuclear degrees of freedom are consistent with these
observations. In contrast, the unusually rapid ET rate 3.0×
109 s-1 (40 Å, 15 base pairs) reported in ref 7 suggests a much
smaller value ofâ (0.2 Å-1). This has been attributed to

sequential hopping (transport), where the DNA molecule may
act as a quantum wire,8,19since the sequential mechanism results
in a much weaker distance dependence of the rate.
Hu and Mukamel have shown that by formulating the problem

of long-range electron transfer using the density matrix, it is
possible to incorporate both mechanisms into a single unified
theoretical framework.20 The process may then be analyzed
using Liouville space pathways. The superexchange (sequential)
mechanism proceeds through off-diagonal (diagonal) density
matrix elements in the site representation. The competition
between the two mechanisms drew much attention in the context
of the primary charge separation in the photosynthetic reaction
center,25,26 where a single chlorophyll molecule serves as a
bridge between the special pair and the bacteriopheophytin.
Using the site representation for the electronic states and

assuming that each molecule (donor, acceptor, and bridge)
interacts independently with the solvent, it is possible to
calculate the electron-transfer rate perturbatively in the inter-
molecular hopping integral. Coupling with the solvent can then
be incorporated rigorously and nonperturbatively. The problem
with this approach is that the number of necessary Liouville
space pathways increases very rapidly with the bridge size.
Higher order contributions in electronic couplings among sites
are required to calculate the superexchange transfer from the
donor to the acceptor in these theories. For example, for a
system whose electronic structure can be modeled by anN-site
one-dimensional tight binding Hamiltonian (the end sites are
the donor and the acceptor), the superexchange ET rate is
represented by the 2(N - 1)th order term in the electronic
couplings between sites. For long bridges, higher order terms
must be included, resulting in a large number of Liouville space
pathways. Because of this difficulty, numerical calculations
based on this expansion were limited to a three-site system.
The competition between the two mechanisms was discussed
for systems with more than three sites,24 by neglecting nuclear
degrees of freedom, using projection operator techniques. The
density matrix approach has been recently applied to calculate
the time evolution of ET in DNA including nuclear dynamics
by applying the Redfield equations of motion.19 The Redfield
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superoperator was calculated perturbatively in the coupling with
the solvent. Consequently, this approach does not incorporate
the solvent reorganization energies, which are required for a
complete theoretical description of electron transport. In
particular it does not reduce to the Marcus theory in the proper
limit.
In this paper we extend the density matrix theory of

photoinduced charge transfer in a donor/bridge/acceptor
system,20-24 to incorporate the reorganization energy, taking into
account a realistic model for nuclear dynamics with an arbitrary
distribution of time scales. The nuclear degrees of freedom are
modeled as a continuous distribution of harmonic oscillators.
All nuclear properties that affect the electronic degrees of
freedom are contained in the spectral densities which describe
the coupling of nuclear degrees of freedom to electronic
populations in the site (real space) representation. By using
the delocalized molecular orbital basis set, the number of
Liouville space paths is greatly reduced. The present theory is
nonperturbative in the electronic couplings among sites and in
the coupling to solvent and applies even when the donor or the
acceptor is strongly coupled to the bridge. It thus reproduces
all the known limiting cases for the rate, including the Marcus
theory.
We found that ET is governed by the superexchange

mechanism for shorter bridges and by the sequential mechanism
for longer bridges. The effects of the bridge size, the energy
gap between the donor/acceptor and the bridge, the reorganiza-
tion energies, and the temperature on the competition between
these two mechanisms are investigated. Time-resolved and
time- and frequency-resolved fluorescence from the acceptor
following an optical excitation of the donor are calculated. Both
excitation and emission processes are treated microscopically
without invoking the standard assumption that the excited donor
state is equilibrated initially. The signal has two contri-
butions: a short-time coherent process, representing a direct
excitation of the acceptor by the radiation field, and a long-
time, incoherent process. Only the latter can be described by
a simple rate equation. The short-time component may be
neglected when nuclear relaxation is fast compared with the

ET rate. This corresponds to an assumption that the nuclei are
equilibrated with the initial distribution of electronic states.
Although this assumption is used in the present numerical
calculations, the formulation applies to slow nuclear relaxation
as well.
The plan of this paper is as follows: The Hamiltonian for

the donor/bridge/acceptor ET system is presented in section II.
In section III we calculate the time- and frequency-resolved
fluorescence signal from the acceptor following excitation of
the donor. Simplified expressions for measurements conducted
with a short (impulsive) pulse are derived in section IV. The
spectral-diffusion limit is considered in section V. The numer-
ical studies presented in section VI demonstrate the competition
between the tunneling and the sequential mechanisms. These
calculations use typical parameters employed in current experi-
ments on DNA charge transfer. Finally our results are sum-
marized in section VII.

II. Hamiltonian and Nuclear Spectral Densities

We consider a system consisting of a donor and an acceptor
coupled though a bridge (Figure 1a). We denote the state where
the transferring electron is on thenth molecule by|n〉 and its
energyE′n. |1〉 and|N〉 represent an electronically excited state
of the donor and acceptor, respectively and|n〉 (n ) 2, 3, ...,N
- 1) are bridge states. The donor and the acceptor ground states
will be denoted by|D〉 and |A〉, respectively. The hopping
integral between themth andnth molecules isVmn. We assume
that each molecule is coupled to its own harmonic bath, and
the molecular Hamiltonian is

wherepjn, qjn, mjn, and djn are the momentum operator, the
coordinate, the mass, the frequency, and the displacement of
the jth oscillator coupled to thenth molecule.
The total Hamiltonian representing the system interacting with

the radiation fieldε(t) is

We assume that only the donor and the acceptor are coupled to
the radiation field, and the polarization (dipole) operator is given
by

Initially the system is in its ground state|D〉, which is therefore
denoted|0〉. To decouple the bath in the initial (ground) state,
we apply a transformationq′j1 ≡ qj1 - djD and recast the
Hamiltonian in the form

Figure 1. Electronic structure of the donor/bridge/acceptor system (a)
in the site representation and (b) in the delocalized eigenstate
representation. The delocalized states are denoted|k〉 ≡ Bk

†|0〉.

H ≡∑
n)1

N

En|n〉〈n| + ∑
mn

m*n

Vmn|m〉〈n| +

∑
n)1

N

∑
j

( pjn22mjn

+
mjnωjn

2qjn
2

2
- mjnωjn

2djnqjn|n〉〈n|) +

ED|D〉〈D| - ∑
j

mj1ωj1
2djDqj1|D〉〈D| + EA|a〉〈A| -

∑
j

mjNωjN
2djAqjN|A〉〈A| (2.1)

HT(t) ≡ H - ε(t)P (2.2)

P≡ PD + PA (2.3)

PD ≡ µD(|D〉〈1| + |1〉〈D|) (2.4)

PA≡ µA(|A〉〈N| + |N〉〈A|) (2.5)
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where we introduced operatorsBn ≡ |D〉〈n|, Y≡ |D〉〈A|, Ω′n ≡
En - ED + ∑jmj1ωj1

2(djD2 - δn1dj1djD), andΩA ≡ EA - ED +
∑jmj1ωj1

2djD2. Hph is the bath Hamiltonian,

and the collective coordinatesq(c) are defined by

In eq 2.6 we have set the ground-state energy of the system
ED - ∑j(mj1ωj1

2djD2/2) to zero. The collective coordinates
defined by eq 2.8 are described by the spectral densitiesCn(ω),
n ) 1, ...,N, CD(ω), CA(ω), C1D(ω), andCNA(ω),

Using this notation, the donor and acceptor dipole operators
assume the form

We next switch to the delocalized molecular orbital repre-
sentation (see Figure 1b). To that end we consider the electronic
Hamiltonian H(el) consisting of first two terms in eq 2.27,
[H(el)]mn≡ δmnΩ′m + (1 - δmn)Vmn. We denote its normalized
eigenfunctionsψk(n) with energiesΩk and introduce the exciton
creation operatorsBk

†,

The Hamiltonian is recast in a form

with

In eqs 2.18-2.26 k, k′ label exciton states. The collective
coordinatesqY

(c), qk
(c), andqkk′

(c) in the exciton representation are
defined by

andqk
(c) ≡ qkk

(c). The corresponding spectral densities are given
by

The dipole operators adopt the form

with the dipole matrix elements

This Hamiltonian will be used in the coming sections.

III. Time- and Frequency-Resolved Fluorescence Signal

The Hamiltonian (eqs 2.17-2.26) is formally identical to that
derived in ref 30 for molecular aggregates, whereB† denoted
one-exciton creation operators, whereasY†’s were creation
operators for two-exciton states. In our case theY† operator
moves an electron from the ground state of the donor to the
ground state of the acceptor. However, the two Hamiltonians
are formally identical, and all the results of ref 30 can be applied
to the present problem.
The time- and frequency-resolved signalS(t, ωs) can be

represented in a form

H ) ∑
n

Ω′nBn
†Bn + ∑

mn

m*n

VmnBm
†Bn + ΩAY

†Y-

∑
n

(qn
(c) - qD

(c))Bn
†Bn - (qA

(c) - qD
(c))Y†Y+ Hph (2.6)

Hph≡∑
n)1

N

∑
j

( pjn22mjn

+
mjnωjn

2qjn
2

2 ) (2.7)

qn
(c)≡∑

j

mjnωjn
2djnqjn

qD
(c)≡∑

j

mj1ωj1
2djDqj1

qA
(c)≡∑

j

mjNωjN
2djAqjN (2.8)

Cn(ω) ≡∑
j

mjnωjn
3

4
djn

22π[δ(ω - ωjn) - δ(ω + ωjn)]

for n) 1, 2, ...,N (2.9)

CD(ω) ≡∑
j

mj1ωj1
3

4
djD

22π[δ(ω - ωj1) - δ(ω + ωj1)]

(2.10)

CA(ω) ≡∑
j

mjNωjN
3

4
djA

22π[δ(ω - ωjN) - δ(ω + ωjN)]

(2.11)

C1D(ω) ≡∑
j

mj1ωj1
3

4
dj1djD2π[δ(ω - ωj1) - δ(ω + ωj1)]

(2.12)

CNA(ω) ≡∑
j

mjNωjN
3

4
djNdjA2π[δ(ω - ωjN) - δ(ω + ωjN)]

(2.13)

PD ≡ µD(B1
† + B1) (2.14)

PA≡ µA(Y
†BN + BN

†Y) (2.15)

Bk
†≡∑

n

ψk(n)Bn
† (2.16)

H ≡ H0 + H1 (2.17)

H0≡∑
k

ΩkBk
†Bk + ΩAY

†Y- ∑
k

qk
(c) Bk

†Bk - qY
(c)Y†Y+ Hph

(2.18)

H1≡ - ∑
kk′

k*k′

qkk′
(c) Bk

†Bk (2.19)

qY
(c)≡ qA

(c) - qD
(c) (2.20)

qkk′
(c)≡∑

n

ψk(n) ψk′(n)(qn
(c) - qD

(c)) (2.21)

Ckk′,qq′(ω) ) ∑
mn

ψk(m) ψk′(m) ψq(n) ψq′(n)[δmnCm(ω) +

CD(ω) - δ1nC1D(ω) - δ1mC1D(ω)] (2.22)

Ckk′,Y(ω) ) ∑
n

ψk(n) ψk′(n)[CD(ω) - δ1nC1D(ω) +

δnNCNA(ω)] (2.23)

CYY(ω) ) CD(ω) + CA(ω) (2.24)

PD ≡∑
k

µDk(Bk
† + Bk) (2.25)

PA≡∑
k

µAk(Y
†Bk + Bk

†Y) (2.26)

µDk≡∑
k

µDψk(1) (2.27)

µAk≡∑
k

µAψk(N) (2.28)
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with

where for any operatorB we define the Heisenberg operator
B̃(t) whose evolution is determined by the total Hamiltonian
HT. The simpler time-resolved signalI(t) is given by

Expanding the expectation value in the rhs of eq 3.1 to second
order in the driving fieldε(t) and invoking the rotating wave
approximation,S̃(t, τ) is expressed in terms of four-point
correlation functions of the dipole operators,

In contrast to eq 3.2, the time evolution is now determined by
the free molecular HamiltonianH (without the radiation field),

Making use of eqs 2.25 and 2.26, we obtain

where

The correlation function in the rhs of eq 3.7 has been calculated
in ref 30 using a perturbative expansion inH1. Substituting
the result of ref 30 into eq 3.7, we obtain

where

DL is the doorway function representing the density matrix
created upon optical excitation.WL is a window function
representing the detection process.Gkk′ is the Green function
representing polaron population relaxation, andS̃(st) is the short-
time component of the signal. These quantities can be expressed
in terms of line-shape functionsgµν(τ) µ, ν ) kk′, Y related to
spectral densitiesCµν(ω).

All quantities are given in Appendix A.
The Green functionGkk′(τ) can be calculated by solving the

master equation

with Gkk′(0) ) δkk′, and the kernel

Kqq′
L (τ) has the form

with

and

Equations 3.1 and 3.8-3.16 provide a closed expression for
the time- and frequency-resolved fluorescence signal.
In concluding this section we present the expression for the

simpler, time-resolved, signal (integrated over frequency)
defined by eq 3.3. Using eqs 3.3, 3.8, and A3, it can be
represented in the doorway/window form:

with the short-time component

IV. Impulsive Signals Obtained with Short Excitation
Pulses

The expressions for the signals derived in section III can be
simplified considerably when the excitation pulse is short. We
represent the driving electric fieldε(τ) in the form

S(t, ωs) )∫-∞

∞
dτeiωsτS̃(t, τ) (3.1)

S̃(t, τ) ≡ 〈P̃A(t + τ) P̃A(t)〉 (3.2)

I(t) ≡ ∫dωsS(t, ωs) ) 〈P̃A(t) P̃A(t)〉 (3.3)

S̃(t, τ) ≡ ∫-∞

t
dτ′∫-∞

t+τ
dτ′′〈PD(τ′′) PA(t + τ) ×

PA(t) PD(τ′)〉
ε(τ′)

p

ε(τ′′)
p

(3.4)

P(t) ≡ exp( ipHt) P exp(-
i
p
Ht) (3.5)

S̃(t, τ) ≡ ∫-∞

t
dτ′∫-∞

t+τ
dτ′′ F2(τ′′, t + τ, t, τ′)

ε(τ′)
p

ε(τ′′)
p

(3.6)

F2(τ4, τ3, τ2, τ1) ≡
∑
kk′qq′

µDkµAk′µAqµDq′〈Bk(τ4) Bk′
†(τ3) Y(τ3) Y

†(τ2) Bq(τ2) Bq′
† (τ1)〉

(3.7)

S̃(t, τ) ≡ θ(τ)∑
kk′
∫-∞

t
dτ′∫-∞

t′
dτ′′ Wk

L(τ) Gkk′(t - τ′) ×

Dk′(τ′ - τ′′)
ε(τ′)

p

ε(τ′′)

p
+ θ(-τ)∑

kk′
∫-∞

t+τ
dτ′∫-∞

t′
dτ′′ ×

Wk
L(τ) Gkk′(t + τ - τ′) Dk′(τ′ - τ′′)

ε(τ′)

p

ε(τ′′)

p
+

S̃(st) (t, τ) (3.8)

Dk′(t) ≡ Dk′
L(t) + Dk′

L(-t) (3.9)

gµν(τ) ≡ ∫-∞

∞ dω
2π

Cµν(ω)

pω2 [(1- cos(ωτ)) coth( pω
2kBT) +

i(sin(ωτ) - ωτ)] (3.10)

d

dτ
Gkk′(τ) ) ∑

q

KkqGqk′(τ) (3.11)

Kqq′ ≡ ∫-∞

∞
dτKqq′

L (τ) for q* q′ (3.12)

Kqq≡ ∑
q′′

q′′*q

Kq′′q (3.13)

Kqq′
L (τ) ) Kqq′

(F)(τ){g̈qq′,q′q(τ) - [ğq′q,q′q′(τ) - ğq′q,qq(τ) +

2
i
p

λq′q,q′q′] × [ğq′q,qq′(τ) - ğqq,qq′(τ) + 2
i
p

λqq′,q′q′]} (3.14)

Kqq′
(F)(τ) ) exp[- i

p
(Ωq - Ωq′)τ - fhqq′(τ)] (3.15)

fhqq′(τ) ≡ gqq,qq(τ) + gq′q′,q′q′(τ) - gq′q′,qq(τ) -gqq,q′q′(τ) +

2
i
p
(λq′q′,q′q′ - λqq,q′q′)τ (3.16)

I(t) ) ∑
kk′
|µAk|2∫-∞

t
dτ′∫-∞

τ′
dτ′′ Gkk′(t - τ′) ×

Dk′(τ′ - τ′′)
ε(τ′)

p

ε(τ′′)

p
+ I(st)(t) (3.17)

I(st)(t) )∫-∞

t
dτ′∫-∞

t
dτ′′ F2(τ′′, t, t, τ′)

ε(τ′)

p

ε(τ′′)

p
-

∑
k

|µAk|2∫-∞

t
dτ′∫-∞

τ′
dτ′′ Dk(τ′ - τ′′)

ε(τ′)

p

ε(τ′′)

p
(3.18)

ε(τ) ) E(τ)e-iω0τ + E*(τ)eiω0τ (4.1)
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whereω0 is the carrier frequency of the exciting pulse andE(τ)
is the envelope, which is slow compared to the carrier frequency
ω0: t0 . ω0

-1, wheret0 is the pulse duration. We also assume
that t0 , tp, wheretp is the time scale of population relaxation
defined by the lowest nonzero mode of the master equation.
The other two important time scales characterizing the system
are the dephasing timetd, determined by the time scale ofD(t)
andW(t), and the nuclear relaxation time scaletn. We assume
td, tn , tp, where the ratio oftd and tn may be arbitrary. The
limits td , tn and tn , td are known as spectral diffusion and
homogeneous limits respectively.27

We first consider the snapshot limit whentd , t0 , tp. The
signals are conveniently expressed in terms of the Fourier
transforms of the doorway and window functions:

Dk(ω) andWk(ω) represent the absorption and fluorescence
spectra of thekth exciton, respectively. Substituting eq 4.1 into
our expressions for the signals, we can then carry out the
necessary integrations, which yields for the time- and frequency-
resolved signal

The time-resolved signal is similarly given by

The expressions for the short-time components can be simplified
further in the spectral diffusion limittd , tn and for snapshot
excitation: td , t0 , tp27 where they assume the form

V. Spectral Diffusion Limit

In this section, using the overdamped Brownian oscillator
model for the spectral density,27 we derive closed expressions
for the DW function,Dk′(ω), Wk(ω), and the kernelKqq′. We
assume that all collective bath coordinates have the same
relaxation rateΛ,

where

with djD ) xλD/λ1dj1 anddjA ) xλA/λNdjN. For simplicity we
assume that the reorganization energies are uncorrelated (i.e.,
each site has its own bath). This assumption may be relaxed
without a major complication. Allgµ,ν(t) are now expressed
using a single functiong(t) as

where

and

In the high-temperature limit,kBT . pΛ, using eqs 5.8 and
5.10 we have

where

Dk(ω) ≡ ∫-∞

∞
dτeiωτDk

L(τ) (4.2)

Wk(ω) ≡ ∫-∞

∞
dτeiωτWk

L(τ) (4.3)

S(t, ωs) ) ∑
kk′
Wk(ωs) Gkk′(t) Dk′(ω0)∫-∞

∞
dτ′
|E(τ′)|2

p2
+

S(st)(ωs, t) (4.4)

I(t) ) ∑
kk′
|µAk|2Gkk′(t) Dk′(ω0)∫-∞

∞
dτ′
|E(τ′)|2

p2
+ I(st)(t) (4.5)

I(st)(t) ) [∫-∞

∞
dτ′ F2(0, t, t, τ′)eiω0τ′ -

∑
k

|µAk|2Dk′(ω0)]∫-∞

∞
dτ′′
|E(τ′′)|2

p2
(4.6)

S(st)(ωs, t) ) [∫-∞

∞
dτ′∫-∞

∞
dτ′′ F2(0, t, t + τ′′, τ′)eiωsτ′′+iω0τ′ -

∑
k

Wk(ωs) Dk(ω0)]∫-∞

∞
dτ
|E(τ)|2

p2
(4.7)

Cn(ω) )
λn
λ
C(ω) for n) 1, 2, ...,N (5.1)

CD(ω) )
λD
λ
C(ω) (5.2)

CA(ω) )
λA
λ
C(ω) (5.3)

λn≡∑
j

mjnωjn
2djn

2

2
(5.4)

λD ≡∑
j

mj1ωj1
2djD

2

2
(5.5)

λA≡∑
j

mjNωjN
2djA

2

2
(5.6)

λ ≡ 1

N
∑
n)1

N

λn (5.7)

C(ω) ≡ 2
λωΛ

ω2 + Λ2
(5.8)

gµ,ν(t) )
λµ,ν

λ
g(t) (5.9)

g(t) ≡ ∫-∞

∞ dω
2π

C(ω)

ω2 [(1- cos(ωt)) coth( pω
2kBT) +

i(sin(ωt) - ωt)] (5.10)

λkk′,qq′ ≡∑
mn

ψk(m) ψk′(m) ψq(n) ψq′(n)[δmnλm + λD -

(δ1n + δ1m)xλ1λD] (5.11)

λkk′,Y≡∑
n

ψk(n) ψk′(n)[λD - δ1nxλ1λD + δnNxλNλA] (5.12)

λYY≡ λD + λA (5.13)

g(t) ≡ z(e-Λt + Λt - 1) for t g 0 (5.14)

g(-t) ) g*( t) (5.15)

z≡ (2λkBT

p2Λ2
- i

λ
pΛ) (5.16)
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In the static limit, 2λkBT . (pΛ)2, using eqs 3.12-3.16 and
5.11-5.16, we obtain

where

with

Equations 5.17-5.18 satisfy the detailed balance condition,
Kqq′/Kq′q ) exp[-(Ωh q - Ωh q′)/kBT]. In the same manner we
obtain

with

The complete expression for the rate matrixKqq′ for the
overdamped Brownian oscillator spectral density, which is not
limited to the static limit, is given in Appendices B and C.

VI. Interplay or Tunneling and Sequential Transfer

The calculations presented in this section illustrate the range
of parameters and time scales whereby the ET process can be
considered either direct (tunneling) or hopping type. We have
used typical parameters for DNA charge transfer and varied
them over a broad range. These results show under what
conditions a DNA bridge acts as a quantum wire. For the
electronic parameters we usedED ) -1.25 eV,EA ) -2.29
eV, E1 ) -0.25 eV,EN ) -0.29 eV,En ) 0.0 eV forn ) 2,
3, ..., V- 1. A nearest neighbor hopping matrix elementVn,n(1
) 0.025 eV was assumed. The reorganization energies areλn
) 0.1 eV (n ) 1, 2, ...,N), andλD ) λA ) 0.05 eV. Nuclear
relaxation rateΛ ) 1012 s-1, and the temperature is 300 K.
In Figure 2 we display the time-resolved fluorescence from

the acceptor calculated using eqs 4.5 and 5.17-5.25 for varying
numbers of sitesN. The carrier frequency of the exciting pulse
ω0 is Ω1 ) 1.059 eV. The ordinate coincides with the
population of the acceptor because∑k|µAk|2, ∑k′Dk′(ω0), and

∫-∞
∞ dτ′ |E(τ′)|2/p2 are normalized to 1. Since typical nuclear
relaxation time scales (∼1 ps) are much shorter than the ET
time scale (J 1 ns) in DNA, we neglect the short-time
component which decays to zero on the nuclear relaxation time
scale. The lowest eigenvalue of the matrixK (whose elements
areKqq′) is zero and gives the thermal equilibrium distribution.
The second eigenvalueK dominates the relaxation to equilibrium
at long times. In Figure 2 the scaled timeKt is used as an
abscissa. Since for these parameters population of the bridge
is negligible compared with the donor and acceptor, we expect
the population of the acceptorpN(t) to be close to

with

Kqq′ ) Fqq′( πp2

λqq′kBT)1/2 exp[-
(Ωh q - Ωh q′ + λhqq′)

2

4λhqq′kBT ] (5.17)

Fqq′ ≡
1

p2[(Ωh q - Ωh q′)(λq′q,q′q′ - λq′q,qq) - λhqq′(λq′q,q′q′ + λq′q,qq)

λhqq′ ]2 +

2kBT

p2
(λqq′,q′q -

(λq′q,q′q′ - λq′q,qq)
2

λhqq′ ) (5.18)

Ωh q≡ Ωq - λqq,qq (5.19)

λhqq′ ≡ λqq,qq + λq′q′,q′q′ - λq′q′,qq - λqq,q′q′ (5.20)

Dk(ω) ) µDk
2( πp2

λhkkBT)1/2 exp[-
(Ωk - pω)2

4λhkkBT ] (5.21)

Wk(ω) ) µAk
2( πp2

λhAkkBT)1/2 exp[-
(Ωh A - Ωh k + λhAk - pω)2

4λhAkkBT ]
(5.22)

λhk≡ λkk,kk (5.23)

λhAk≡ λkk,kk + λY,Y - 2λkk,Y (5.24)

Ωh A ) ΩA - λY,Y (5.25)

Figure 2. Time-resolved fluorescenceI(t) (which is proportional to
the population of the acceptor) vs scaled timeKt for different values
of the number of sitesN, as indicated. Temperature is 300 K.
Reorganization energies areλn ) 0.1 eV (n ) 1, 2, ...,N), λD ) 0.05
eV, andλA ) 0.05 eV. Nuclear relaxation rateΛ is 1 ps-1. Electronic
structure is as follows:ED ) -1.25 eV,EA ) -2.29 eV,E1 ) -0.25
eV, EN ) -0.29 eV,En ) 0.0 eV, forn ) 2, 3, ...,N - 1, andVmn )
0.025 eV form) n- 1 orm) n+ 1; otherwiseVmn) 0. The carrier
frequency of the exciting pulseω0 is Ω1/p (Ω1 ) 1.059 eV). The
population of the acceptor (eq 6.1) is plotted as well. Solid line: Time-
resolved fluorescenceI(t). Dashed line: eq 6.1.

Figure 3. ET rate log10 K (K is in ps-1.) vs number of sitesN (the
distance between the donor and the acceptor). Parameters are the same
as Figure 2. Solid line: log10K. Dashed line: log10K(seq). Short dashed
line: log10K(sup). Dotted line: log10K(seq). Dash-dotted line: log10K(sup)′.

pN(t) ) pN(∞)(1- e-Kt) (6.1)
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Here the delocalized state that goes tokth site state in the limit
of Vmn ) 0 is denoted byqk.
Figure 2 shows that eq 6.1 indeed represents very well the

fluorescence decay curves.K can thus be interpreted as a sum
of the forward and backward ET rates. All time-resolved
fluorescence curves are similar except for theN ) 2 case (no
bridge), where the two states,|1〉 and |N〉, are strongly mixed
compared with the other cases. Hereafter we refer toK as the
ET rate. The variation of this rate with the number of sites,N,
using the parameters as in Figure 2 is shown in Figure 3. To
analyze these results, we define the 2× 2 superexchangeK(sup)

matrix.

We further introduce the sequential rate matrixK (seq).

For N ) 2 we defineK(sup)≡ K(seq). We define the superex-
change and sequential ET rates,K(sup) andK(seq), as the second
lowest eigenvalues ofK(sup) and K(seq), respectively. These
quantities are plotted in Figure 3 as well. We see that for
smallerN the superexchange transfer dominates, and for larger
N the sequential transfer takes over.
To investigate the competition between the two mechanisms,

we calculated the ET rate as a function ofN, varying the energy
gap between the donor site and the first bridge site,∆E ≡ E2
- E1. We kept all bridge energies to be the same,En ) 0.0 eV
for n ) 2, 3, ...,N - 1, and the difference between the donor
and the acceptor energies is the same as Figure 2, settingE1 )
-∆E andEN ) -∆E - 0.04 eV. Figure 4 shows that as the
energy gap∆E is increased, the superexchange rate curve
becomes steeper, and the sequential transfer rate slows down.
The reorganization energyλ and temperatureT are also varied
(Figures 5 and 6). Figure 7 displays the variation of the rate
with bridge size on a logarithmic scale. The rate varies asN-R

for largeN, where the exponentR is not universal and depends
on the parameters.
We next investigate the effect of energetic disorder of the

bridge sites.En for n) 3, ...,N- 1 are modeled as independent
random Gaussian variables whose average value is zero and
varianceδ ) 2.5× 10-3 eV2. This static disorder is sufficient
to localize the exciton state within∼2 sites. Other parameters
are identical to Figure 2.
At this point we would like to compare the present rates with

those calculated perturbatively in the electronic couplingVnm.
The perturbative 2× 2 superexchange rate matrix isK(sup)′ with
matrix elements

where

Similarly, the perturbative sequential rate matrixK(seq)′ is
given by

ForN ) 2 we defineK(sup)′ ≡ K(seq)′. This perturbation theory
has been used to investigate the competition between the
superexchange and sequential transfer.20-23 The superexchange
ET rateK(sup)′ and the sequential ET rateK(seq)′ defined as the
second lowest eigenvalues ofK (sup)′ andK (seq)′, respectively,
are shown in Figure 8 as well. We note thatK(sup)′ is very close
to K(sup) andK(seq)′ is very close toK(seq). This is not the case
when the bridge eigenstates are delocalized, as illustrated in
Figure 3.
Finally, the calculated time- and frequency-resolved fluores-

cence is displayed in Figure 9. All parameters are the same as
in Figure 2 except for the number of sites,N, which is 10.

pN(∞) ≡
exp(-

Ωh qN

kBT)
exp(-

Ωh q1

kBT) + exp(-
Ωh qN

kBT)
(6.2)

(Kq1q1

(sup) Kq1qN

(sup)

KqNq1

(sup) KqNqN

(sup)) ≡ (-KqNq1
Kq1qN

KqNq1
-Kq1qN ) (6.3)

Kqq′
(seq)≡ 0 for (q, q′) ) (q1, qN) or (q, q′) ) (qN,q1) (6.4)

Kqq′
(seq)≡ Kqq′ for q* q′, (q, q′) * (q1, qN),

and (q, q′) * (qN,q1) (6.5)

Kqq′
(seq)≡ ∑

q′′ (q′′*q)
Kq′′q
(seq) for q) q′ (6.6)

Figure 4. ET rate log10 K (K is in ps-1.) vs number of sitesN (the
distance between the donor and the acceptor), for varying values of
the energy gap∆E, as indicated. Other parameters are the same as
Figure 2.

KN1
(sup)′ ≡ |TN1|2x π

p2λhN1kBT
exp[-

(EhN - Eh1 + λhN1)
2

4λhN1kBT ] (6.7)

K1N
(sup)′ ≡ |TN1|2x π

p2λh1NkBT
exp[-

(EhN - Eh1 + λh1N)
2

4λh1NkBT ] (6.8)

K11
(sup)′ ≡ -KN1

(sup)′ (6.9)

KN,N
(sup)′ ≡ -K1N

(sup)′ (6.10)

Ehn≡ En - λn (6.11)

λhnn′ ≡ λn + λn′ (6.12)

TN1≡ VNN-1 ‚‚‚ V43
1

E- E3
V32

1
E- E2

V21 (6.13)

E≡ Eh1 +
(EhN - Eh1 + λhN1)

2

4λhN1
(6.14)

Knn′
(seq)′ ≡ |Vnn′|2x π

p2λhnn′kBT
exp[-

(EhN - Eh1 + λhnn′)
2

4λhnn′kBT ]
for n* n′ (6.15)

Knn′
(seq)′ ≡ ∑

n′′(n′′*n)
Kn′′n
(seq)′ for n) n′ (6.16)
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Assuming thatNth electronic state is well-localized on the
acceptor, time- and frequency-resolved fluorescenceS(t,ωs) can
be approximated as,

whereW(ωs) is fluorescence from an isolated acceptor,

with λAN≡ λA + λN - 2xλAλN andpωAN≡ (ΩA - λA) - (ΩN

- λN) + λhAN. In general, the fluorescence line shape varies
with time and may not be factorized in the form of eq 6.17.

VII. Discussion

In the present theory the ET system is modeled by a
Hamiltonian describing localized electronic states in the site
representation, coupled to each other and to harmonic nuclear
degrees freedom. To include higher order contributions in the
electronic couplings among sites, the eigenstates of the electronic
part of Hamiltonian are used as a basis set. In this representation
the nuclei couple to diagonal as well as off-diagonal elements
of the electronic Hamiltonian. Only the latter couplings are
treated perturbatively. This treatment of nuclear modes incor-
porates the reorganization energy as well as memory effects of
nuclear modes. The photoexcitation of the donor and the
resulting fluorescence are formulated microscopically, without

Figure 5. Same as Figure 4, except that the reorganization energyλ
is varied, as indicated whereλn ) λ (n ) 1, 2, ...,N), λD ) λ/2, andλA
) λ/2.

Figure 6. Same as Figure 4, except that the temperatureT is varied,
as indicated.

Figure 7. Same as Figure 4, but abscissa in logarithmic scaleN. Solid
line: log10 K. Dashed line:-R log10N. The exponentsR are listed in
this figure.

S(t, ωs) ) I(t)W(ωs) (6.17)

Figure 8. Same as Figure 2, but disorder is included in the bridge site
energies. EachEn for n ) 2, 3, ...,N - 1 has Gaussian distribution
with average 0.0 and variance 0.05 eV.

Figure 9. Time- and frequency-resolved fluorescenceS(t, ωs). The
parameters are the same as in Figure 2, but the number of sitesN is
10. The abscissa isp(ωs - ωAN), whereωAN is the frequency of
maximum fluorescence from an isolated acceptor, and the unit of the
ordinate is arbitrary. Timet is varied from 0 to 2K-1 whereK ) 0.29
[µs-1], as indicated. Solid line: eq 4.4. Dashed line: the approximation
(eq 6.17).

W(ωs) ) ( πp2

λANkBT)1/2 exp[-
(pωAN - pωs)

2

4λhANkBT ] (6.18)
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invoking the common assumption that the excited donor state
is equilibrated initially. Using the present theory, the effects
of the bridge size, the energy gap between the donor/acceptor
and the bridge, the reorganization energies, and the temperature
on the competition between the superexchange and sequential
transfer were investigated, and the time- and frequency-resolved
fluorescence was calculated.
Effects of solvation on long-range ET in DNA have been

studied recently in ref 19 using the density matrix approach.20

A single high-frequency vibrational oscillator was coupled to
the electronic states of the donor/bridge/acceptor systems. The
oscillator and the electronic states were then coupled to other
nuclear bath modes. Eliminating these external degrees of
freedom and applying the Redfield equation of motion, the time
evolution of ET in DNA including nuclear dynamics was
calculated. The Redfield equation retains terms only up to
second order in the system-bath coupling, and the bath time
scale is assumed to be much shorter than the ET process.
Consequently, the reorganization energy (which originates from
slow nuclear modes) and the finite time scale of the nuclear
modes except for the high-frequency mode were not included.
Finally we comment on the relation between the present

calculations which use the delocalized electronic basis set and
the direct perturbative calculation of the rate in intermolecular
electronic coupling. We expect the two to be similar if the
coupling is weak,|Ω′n - Ω′n′| . Vnn′. Expanding the transfer
rate between theqth andq′th excitons inVnn′, we obtain

where

is the Marcus rate between thenth andn′th states. Theqth and
q′th states go to thenth andn′th states, respectively, in the
Vnn′ ) 0 limit. Here

WhenVmn is weak, the two perturbation theories give similar
expressions for the rate except for different prefactors. The two
expressions coincide when|En′ - En| . |λn′ - λn|.
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Appendix A: Quantities Appearing in Eq 3.8

The auxiliary functions appearing in eq 3.8 are given by

where the correlation functionF2 defined by eq 3.7 is calculated
under the assumption thatH1 ) 0 and has the form30

and

The functionf (2) in eq A4 is given by

Appendix B: ET Rates for a Finite Solvent Time Scale

In this Appendix we present expressions for doorway/window
functions and the kernelKqq′ for the overdamped Brownian
oscillator model for the spectral density, which do not assume
the static limit. A confluent hypergeometric function is used
to derive the expressions.

For τ g 0 we have

Kqq′ ) (1+
λn′ - λn
En′ - En)

2

Knn′ (7.1)

Knn′ ≡ (Vnn′p )2( πp2

(λn + λn′)kBT)1/2×
[-

{(En - λn) - (En′ - λn′) + λn + λn′}
2

4(λn + λn′)kBT ] (7.2)

λqq,qq ) λn (7.3)

λq′q′,q′q′ ) λn′ (7.4)

λq′q′,q′q′ ) ( Vnn′
En - En′

)2(λn + λn′) (7.5)

λq′q,qq )
Vnn′

En - En′
λn (7.6)

λqq′,q′q′ )
Vnn′

En′ - En
λn′ (7.7)

λhqq′ ) λn + λn′ (7.8)

Dk
L(τ) ) µDk

2 exp[- i
p

Ωkτ - gkk,kk(τ)] (A1)

Wk
L(τ) ) µAk

2 exp[- i
p
(ΩA - Ωk)τ + 2

i
p
(λkk,Y - λkk,kk)τ -

gkk,kk(τ) - gY,Y(τ) + 2gkk,Y(τ)] (A2)
S̃(st)(t, τ) )∫-∞

t
dτ′∫-∞

t+τ
dτ′′F2(τ′′, t + τ, t, τ′)

ε(τ′)

p

ε(τ′′)

p
-

θ(τ)∑
k
∫-∞

t
dτ′∫-∞

τ′
dτ′′ Wk

L(τ) Dk(τ′ - τ′′)
ε(τ′)

p

ε(τ′′)

p
-

θ(-τ)∑
k
∫-∞

t+τ
dτ′∫-∞

τ′
dτ′′ Wk

L(τ) Dk(τ′ - τ′′)
ε(τ′)

p

ε(τ′′)

p
(A3)

F2(τ4, τ3, τ2, τ1) ≡
∑
kk′

µDkµDk′µAkµAk′ exp[- f kk′,Y
(2) (τ4, τ3, τ2, τ1)] ×

exp[-
i

p
Ωk(τ2 - τ1) -

i

p
ΩA(τ3 - τ2) -

i

p
Ωk′(τ4 - τ3)]

(A4)

λµ,ν ≡ -p lim
τf∞

Im[dgµ,ν(τ)
dτ ] (A5)

f kk′,Y
(2) (τ4, τ3, τ2, τ1) ) gkk,kk(τ2 - τ1) - gkk,Y(τ2 - τ1) +

gkk,Y(τ3 - τ1) - gkk,k′k′(τ3 - τ1) + gkk,k′k′(τ4 - τ1) -
gkk,Y(τ3 - τ2) + gkk,k′k′(τ3 - τ2) - gkk,k′k′(τ4 - τ2) +
gY,Y(τ3 - τ2) - gk′k′,Y(τ3 - τ2) + gk′k′,Y(τ4 - τ2) -

gk′k′,Y(τ4 - τ3) + gk′k′,k′k′(τ4 - τ3) (A6)
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where

Using eqs B1-B12, we obtain27,31

Here (a)m is defined as

Appendix C: Alternative Expressions for ET Rates

In this section alternative expressions for ET rates which are
not limited to the static limit are derived using a Taylor
expansion for an exponential function in another exponential
function that appears in the expressions of DW functions and
the kernelKqq′ (eqs B1-B3).
For τ g 0 we have

where

Dk
L(τ) ) µDk

2 exp[-iωjDkτ -
λhDk
λ
g(τ)] (B1)

Wk
L(τ) ) µAk

2 exp[-iωj Akτ -
λhAk
λ
g(τ)] (B2)

Kqq′
L (τ) ) (Aqq′e

-2Λτ + Bqq′e
-Λτ + Cqq′) ×

exp[-iωj qq′τ -
λhqq′
λ
g(τ)] (B3)

ωjDk≡
Ωk

p
(B4)

λhDk≡ λkk,kk (B5)

ωj Ak≡ 1
p
(ΩA - Ωk) - 2

p
(λkk,Y - λkk,kk) (B6)

λhAk≡ λkk,kk + λY,Y - 2λkk,Y (B7)

ωj qq′ ≡ 1
p
(Ωq - Ωq′) + 2

p
(λq′q′,q′q′ - λqq,q′q′) (B8)

λhqq′ ≡ λqq,qq + λq′q′,q′q′ - λq′q′,qq - λqq,q′q′ (B9)

Aqq′ ≡ - z2

λ2
Λ2(λq′q,q′q′ - λq′q,qq)(λq′q′,qq′ - λqq,qq′) (B10)

Bqq′ ≡ z
λ
Λ2λqq′,q′q + z

λ
Λ(λq′q,q′q′ - λq′q,qq) ×

[zλΛ(λq′q′,qq′ - λqq,qq′) + 2
i
p

λqq′,q′q′] + z
λ
Λ(λq′q′,qq′ - λqq,qq′) ×

[zλΛ(λq′q,q′q′ - λq′q,qq) + 2
i
p

λq′q,q′q′] (B11)
Cqq′ ≡ - [zλΛ(λq′q,q′q′ - λq′q,qq) + 2

i
p

λq′q,q′q′] ×
[zλΛ(λq′q′,qq′ - λqq,qq′) + 2

i
p

λqq′,q′q′] (B12)

Dk(ω) )

2ReµDk
2

Λ
λhDk

λ
z- i(ω - ωjDk)

∑
m)0

∞ (λhDk

λ
z)m

(λhDk

λ
z- i(ω - ωjDk)/Λ + 1)

m

(B13)

Wk(ω) )

2ReµAk
2

Λ
λhAk

λ
z- i(ω - ωj Ak)

∑
m)0

∞ (λhAk

λ
z)m

(λhAk

λ
z- i(ω - ωj Ak)/Λ + 1)

m

(B14)

Kqq′ )

2Re[Aqq′ 1

Λ
λhqq′

λ
z+ 2Λ + iωj qq′

∑
m)0

∞ (λhqq′

λ
z)m

(λhqq′

λ
z+ iωj qq′/Λ + 3)

m

+

Bqq′
1

Λ
λhqq′

λ
z+ Λ + iωj qq′

∑
m)0

∞ (λhqq′

λ
z)m

(λhqq′

λ
z+ iωj qq′/Λ + 2)

m

+

Cqq′
1

Λ
λhqq′

λ
z+ iωj qq′

∑
m)0

∞ (λhqq′

λ
z)m

(λhqq′

λ
z+ iωj qq′/Λ + 1)

m

]
for q* q′ (B15)

Kqq′ ) - ∑
q′′

q′′*q′

Kq′′q′ for q) q′ (B16)

(a)0≡ 1 (B17)

(a)m≡ a(a+ 1) ... (a+ m- 1) (B18)

Dk
L(τ) ) µDk

2 exp[aDkτ + bDke
-Λτ - bDk] (C1)

) µDk
2 e-bDk∑

n)0

∞ bDk
n

n!
exp[(aDk - nΛ)τ] (C2)

Wk
L(τ) ) µAk

2 exp[aAkτ + bAke
-Λτ - bAk] (C3)

) µAk
2 e-bAk∑

n)0

∞ bAk
n

n!
exp[(aAk - nΛ)τ] (C4)

Kqq′
L (τ) ) exp[aqq′τ + bqq′e

-Λτ - bqq′](Aqq′e
-2Λτ +

Bqq′e
-Λτ + Cqq′) (C5)

) e-bqq′∑
n)0

∞ bqq′
n

n!
exp[(aqq′ - nΛ)τ](Aqq′e

-2Λτ +

Bqq′e
-Λτ + Cqq′) (C6)
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Using eqs B10-B12 and C1-C12, we obtain
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i
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z
λ
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λ
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λ
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z
λ

(C12)
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