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Solvent Reorganization in Long-Range Electron Transfer: Density Matrix Approach
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The dynamics of charge transfer from a photoexcited donor to an acceptor coupled through a bridge is
investigated by using a correlation-function approach in Liouville space that takes into account solvent dynamics
with an arbitrary distribution of time scales. The time- and frequency-resolved fluorescence spectrum from
the acceptor is used to probe the scaling of the ET rate with bridge size. The crossover between the coherent
tunneling (transfer) and the incoherent sequential (transport) regimes and its implications on the nature of ET
processes in DNA are discussed.

I. Introduction sequential hopping (transport), where the DNA molecule may
) ] ) ] ) act as a quantum wirel?since the sequential mechanism results

Many important chemical and biological processes involve iy 3 much weaker distance dependence of the rate.
long-range transfer of energy or charge carriers (electrons and Hu and Mukamel have shown that by formulating the problem

holes). Intense experimental and theoretical effort has beenOf lona-ranae electron transfer using the density matrix. it is
devoted to exploring how the transfer rate depends on the nature 9 9 9 Y ’

of the bridge connecting the donor and the accebtorSeveral p035|bl_e to incorporate both mechanisms into a single unified
. ._theoretical frameworR® The process may then be analyzed
recent experiments have focused on electron transfer (ET) in

DNA,”-13 which is involved in DNA damage and repair using Liquville space pathways. The_superexch_ange (sequent_ial)
mechanisms? Electron and energy transport through DNA is mechanism proceeds through off-diagonal (diagonal) density

used in sequence-specific DNA probes currently being devel- bme;\tl\rllx ﬁl'([ehm?\?vtsnl]n tEeniS'tr?] rgfr\(levsrtre]ntaglo?t. n;li—hr?ircl:?rrrpe“rtlltogt
oped!s It has long been recognized that charge transfer in a —c ween e Wo mechanisms drew much attentio € conte

donor/bridge/acceptor system may proceed in two distinct of the primary charge separation in the photosynthetic reaction

mechanisms. When the bridge energy is much higher than theC(':‘.mer%S'26 where a singlg chlqrophyll moleculg SEIVes as a
donor and acceptor, its role is simply to mediate the coupling bridge between the special pair and the bacteriopheophytin.

VDA between them The e|ectr0n tunne's from the donor to the USing the S|te representation fOf the eleCtrOniC StateS. and
acceptor, and the bridge population is negligible at all times. @ssuming that each molecule (donor, acceptor, and bridge)
This is known as the superexchange mechanism. A perturbativeinteracts independently with the solvent, it is possible to

calculation of the electron tunneling matrix elemaf, was calculate the electron-transfer rate perturbatively in the inter-
first made by McConneR® In the opposite limit when the ~ molecular hopping integral. Coupling with the solvent can then
donnor/acceptor and bridge energies are closer theh, the be incorporated rigorously and nonperturbatively. The problem

bridge acts as a quantum wire and the electron hops throughwith this approach is that the number of necessary Liouville
the bridge. This sequential electron transport mechanism hasspace pathways increases very rapidly with the bridge size.

been studied extensively in, for example, doped polyrHevsa Higher order contributions in electronic couplings among sites
decreases exponentially with the distafteetween the donor ~ are required to calculate the superexchange transfer from the
and the acceptoryexp(—pR/2), and the resulting ET rater donor to the acceptor in these theories. For example, for a
is proportional to exptR). The value of the exponeffitfor system whose electronic structure can be modeled by-site

ET in DNA is controversial, with experimental estimates varying one-dimensional tight binding Hamiltonian (the end sites are
between 0.2 A178 and 0.9 A1.91013 ET rate of 1.6x 10f the donor and the acceptor), the superexchange ET rate is
s 1 has been reported for an eight-base-pair bridge with denor represented by the B(— 1)th order term in the electronic
acceptor separation of 21 %. A 2.5 x 1P s* rate was found couplings between sites. For long bridges, higher order terms
in a different system (six base pairs, 17-A separafidf)These must be included, resulting in a large number of Liouville space
relatively slow rates suggest an expongnt- 1.2—1.6 A1, pathways. Because of this difficulty, numerical calculations
similar to that found in proteins. Recent calculationsVih based on this expansion were limited to a three-site system.
for ET in DNA using the semiemperical complete neglect of The competition between the two mechanisms was discussed
differential overlap (CNDO) methd8land neglecting dynamical  for systems with more than three sifédy neglecting nuclear
effects of nuclear degrees of freedom are consistent with thesedegrees of freedom, using projection operator techniques. The
observations. In contrast, the unusually rapid ET ratex3.0  density matrix approach has been recently applied to calculate
10°s71 (40 A, 15 base pairs) reported in ref 7 suggests a much the time evolution of ET in DNA including nuclear dynamics
smaller value of8 (0.2 A-1). This has been attributed to by applying the Redfield equations of moti&h.The Redfield
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Ez |2> Ea|3> Gy BN ET rate. This corresponds to an assumption that the nuclei are
Bl 1> A > 10 \ equilibrated with the initial distribution of electronic states.
En, N>

Although this assumption is used in the present numerical
W, calculations, the formulation applies to slow nuclear relaxation
w}ﬂ o l"\x as well.
The plan of this paper is as follows: The Hamiltonian for
Ea |A> the donor/bridge/acceptor ET system is presented in section .
Ep, |D> In section Il we calculate the time- and frequency-resolved
fluorescence signal from the acceptor following excitation of
( a ) the donor. Simplified expressions for measurements conducted
with a short (impulsive) pulse are derived in section IV. The
Qk k> (=2,3,.N-1) spectral-diffusion limit is considered in section V. The numer-
- ical studies presented in section VI demonstrate the competition
between the tunneling and the sequential mechanisms. These
calculations use typical parameters employed in current experi-

Q1> .
O N> ments on DNA charge transfer. Finally our results are sum-
- ; w marized in section VII.
S
Wo Te L"A
Qa4 |A I "
.r" s [I. Hamiltonian and Nuclear Spectral Densities

We consider a system consisting of a donor and an acceptor
( b ) coupled though a bridge (Figure 1a). We denote the state where

Figure 1. Electronic structure of the donor/bridge/acceptor system (a) the tran:::femng (Zlectron is on tth Tnolecu.le ﬁy|annddlts
in the site representation and (b) in the delocalized eigenstate energyE,. |1land|NCrepresent an electronically excited state

representation. The delocalized states are derjafés Bf|0L] of the donor and acceptor, respectively and(n = 2, 3, ...,N
— 1) are bridge states. The donor and the acceptor ground states

superoperator was calculated perturbatively in the coupling with will be denoted by|DOand |AL respectively. The hopping

the solvent. Consequently, this approach does not incorporateintegral between theth andnth molecules i%/y,» We assume

the solvent reorganization energies, which are required for athat each molecule is coupled to its own harmonic bath, and

complete theoretical description of electron transport. In the molecular Hamiltonian is

particular it does not reduce to the Marcus theory in the proper

limit. N m=n

In this paper we extend the density matrix theory of H= ZEn|n| + Zan|m| +

photoinduced charge transfer in a donor/bridge/acceptor n= mn

system?®24to incorporate the reorganization energy, taking into N D 2 ML), Zq- 2

account a realistic model for nuclear dynamics with an arbitrary homm

distribution of time scales. The nuclear degrees of freedom are nZ\ ; qun 2

modeled as a continuous distribution of harmonic oscillators. E,|DID| — zmlelzdeqjﬂDmm + EjJalA —
]

- mnwjnzdjnan | nl +

All nuclear properties that affect the electronic degrees of
freedom are contained in the spectral densities which describe )
the coupling of nuclear degrees of freedom to electronic zn}Nw,’N daOnIATAl (2.1)
populations in the site (real space) representation. By using !
the delocalized molecular orbital basis set, the number of
Liouville space paths is greatly reduced. The present theory is Wher€Pin, Gin, Mn, and dy, are the momentum operator, the
nonperturbative in the electronic couplings among sites and in ¢o0rdinate, the mass, the frequency, and the displacement of
the coupling to solvent and applies even when the donor or the thejth oscillator coupled to theth molecule.
acceptor is strongly coupled to the bridge. It thus reproduces The total Hamiltonian representing the system interacting with
all the known limiting cases for the rate, including the Marcus the radiation fielde(t) is
theory.

We found that ET is governed by the superexchange H.(t) =H — (t)P (2.2)
mechanism for shorter bridges and by the sequential mechanism

for longer bridges. The effects of the bridge size, the energy \we assume that only the donor and the acceptor are coupled to

gap between the donor/acceptor and the bridge, the reorganizathe radiation field, and the polarization (dipole) operator is given
tion energies, and the temperature on the competition betweeny

these two mechanisms are investigated. Time-resolved and

time- and frequency-resolved fluorescence from the acceptor P=P,+P, (2.3)
following an optical excitation of the donor are calculated. Both

excitation and emission processes are treated microscopically Pp = up(|DOL| + |10ID|) (2.4)
without invoking the standard assumption that the excited donor

state is equilibrated initially. The signal has two contri- Pa = ua(IAN| + [NLIA]) (2.5)

butions: a short-time coherent process, representing a direct

excitation of the acceptor by the radiation field, and a long- Initially the system is in its ground statB[] which is therefore
time, incoherent process. Only the latter can be described bydenotedOL To decouple the bath in the initial (ground) state,
a simple rate equation. The short-time component may bewe apply a transformatiomf; = ¢ — dp and recast the
neglected when nuclear relaxation is fast compared with the Hamiltonian in the form
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mn=m=—n

z(q“) a5)BIB, — (o) —

H=S QBB + VBTB + QY'Y -
Z n=n=n z

gNY'Y + Hy, (2.6)

where we introduced operatoBg = |D[n|, Y = |DOA|, Q =
En — Ep + Ymu1wj1?(dip? — dmdiidip), and Qa = Ex — Ep +
Yimawji?dip?  Hpn is the bath Hamiltonian,

N p]n n’}nwjnijn2
Hn =33 o T

and the collective coordinatef®) are defined by

2.7)

qg:) = zn}nwjnzdanjn

qg:) = zmlelzdeQJl

() _

Oa" = szijzdeqjN (2.8)
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Bl = zzpk(n)B; (2.16)
n
The Hamiltonian is recast in a form
H=H;+H, (2.17)

with

Ho = ZQKBKBK—F QY'Y — Zq@ BB — aY'Y + H,,
(2.18)

= gq@ ) B/B, (2.19)

In egs 2.18-2.26 k, k' label exciton states. The collective

coordlnatesq(°) q(kc), and qffK) in the exciton representation are
defined by

o =df -

ﬁ%:wamwummﬁ—qm

q (2.20)
(2.21)

In eq 2.6 we have set the ground-state energy of the Systemanqu“) = q. The corresponding spectral densities are given

— Yj(miwj1?dp?2) to zero. The collective coordinates

defined by eq 2.8 are described by the spectral densitigs),

n=1, ..., N, Cp(w), Calw), Cip(w), and Cna(w),
M)y’
Cilw) = z d,227[0(0 — w;,) — 0w + w;,)]
J for n=1,2,...,N (2.9)
Myoy,”
Colw) =Y "~ 422100 — wp) - O + )]
: (2.10)
My’
Cu0) = T ——d22a(0(0 — ) — o(w + w)]
: (2.11)
Cplw) = Z djld]DZH[é(a) wjp) = O(w + w;y)]
: (2.12)
Cralw) = Z dJNdJAZJT[(S((’U wpn) — O(w + wy)]
]

(2.13)

by

Cocat(@) = 3 P 3e(m) 1) (MO ) +
Co(®) = 04,Cip(@) — 84, Cyp(w)] (2.22)

Ckk,Y(w) =

zlh(n) Pe(M[Cp(w) — 81,Cip(w) +
OmCral@)] (2.23)

Cyylw) = Cp(w) + Cy(w) (2.24)
The dipole operators adopt the form
Po= ZIL‘Dk(Bl +B) (2.25)
Pa= ZﬂAk(YTBk + BEY) (2.26)
with the dipole matrix elements
Hpk = Zﬂolpk(l) (2.27)
(2.28)

Up = Zlquk(N)

Using this notation, the donor and acceptor dipole operators This Hamiltonian will be used in the coming sections.

assume the form
Pp= /‘D(BI + By

Pya= ﬂA(YTBN + BLY)

(2.14)
(2.15)

[ll. Time- and Frequency-Resolved Fluorescence Signal

The Hamiltonian (egs 2.172.26) is formally identical to that
derived in ref 30 for molecular aggregates, whBfedenoted
one-exciton creation operators, wherediss were creation
operators for two-exciton states. In our case Wheoperator

We next switch to the delocalized molecular orbital repre- moves an electron from the ground state of the donor to the
sentation (see Figure 1b). To that end we consider the electronicground state of the acceptor. However, the two Hamiltonians

Hamiltonian H®) consisting of first two terms in eq 2.27,

[HEmn= 6,,,Q!, + (L — Sm)Vmn We denote its normalized
eigenfunctionsgp(n) with energie€2y and introduce the exciton
creation operators,

are formally identical, and all the results of ref 30 can be applied
to the present problem.

The time- and frequency-resolved sigrt, ws) can be
represented in a form
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St w) = f dr |wsrgt, T) (3.1) g/w(f) _ L/ioomdgw C;lv(z )[(l — cos@r)) COtI—(ZkBT)
w

Wi i(sin(or) — a)r)] (3.10)
St, 7) = PA(t + 1) PA(H)O (3.2)

All quantities are given in Appendix A.
where for any operatoB we define the Heisenberg operator ~ The Green functioru(r) can be calculated by solving the
B(t) whose evolution is determined by the total Hamiltonian master equation
Ht. The simpler time-resolved signHt) is given by

d
—Gul() = ) KG 3.11
I(t) = [do St 0) = DP(t) Pyt (3.3 I k(@) Z kCak(?) (3.11)

Expanding the expectation value in the rhs of eq 3.1 to secondWith Gu(0) = i, and the kernel
order in the driving fielde(t) and invoking the rotating wave "
approximation,§t, 7) is expressed in terms of four-point Ko = fideK'&q(r) for g=d (3.12)
correlation functions of the dipole operators,

q'=q
St = [ de [ e o) Pt +7) x o= D K (3.13)
P P ) (3.4) i (o) has the form

In contrast to eq 3.2, the time evolution is now determined by qu(r) K(F)(r){ Oqq.qq(® — ’gqqqq(r) gqqqq(r) +
the free molecular Hamiltoniad (without the radiation field),
[gqqqq(r) 4qqq(?) T 2 h ad. qq]} (3.14)

i i h qaq4qd
P(t) = ex;{%Ht) P exp(— EHt) (3.5)
with
Making use of eqgs 2.25 and 2.26, we obtain ® B
- ( | K&(x) = exp[ h(gq —Q)r—T,@| (315)
t+e . . (') e(r”
§t,7) = f dr' [, de" Fo(r", t+ 7, 7)== (3.6) and
where fqd(f) = Jugad® T Yua.qq(D ~ Yyq.ad® ~Yugaa(D) +
[
Fo(ty 73, 75 7)) = ZE(lquyyq.q. Agaqq)T (3:16)

[B(t,) Bi(13) Y(t3) Y'(r,) By(r,) B(r)O
ZﬂDkuAKﬂAqqu (1) Be(rg) Y(79) V() q( 2 Bo(T) Equations 3.1 and 3:83.16 provide a closed expression for

(3.7) the time- and frequency-resolved fluorescence signal.
In concluding this section we present the expression for the
The correlation function in the rhs of eq 3.7 has been calculated simpler, time-resolved, signal (integrated over frequency)
in ref 30 using a perturbative expansionhfi. Substituting defined by eq 3.3. Using eqgs 3.3, 3.8, and A3, it can be

the result of ref 30 into eq 3.7, we obtain represented in the doorway/window form:
S0 =003 [ [ e WD) Gult ) x 0= lund” .07 [ " Bt = 7) x
e(7') (") o+ €(@) (@)
Dt ~ )= ——+6 o' [* dr” De(r — T +1%) (3.17
(@ — 1" (r)gf [ dr x (@ =)= — =+ 1% (3.17)
E(’)e(’”) ith the short-ti t
WD) Gt + 7 — 7) D t_r,,_ with the short-time componen
k(7) Gy ( ) Di( ) Sf; @)
89t 7) (3.8) 1%ty = j de' f dr" F(z", t, t, r)—
where €(7') (")
ZWAKF f dr' f dr" D(7' — r")—— (3.18)
Dy () = Die(t) + Di(—t) (3.9

DL is the doorway function representing the density matrix IV. Impulsive Signals Obtained with Short Excitation

created upon optical excitationWt is a window function Pulses

representing the detection procesSy is the Green function The expressions for the signals derived in section Ill can be
representing polaron population relaxation, &%#lis the short- simplified considerably when the excitation pulse is short. We
time component of the signal. These quantities can be expressedepresent the driving electric fiek(r) in the form

in terms of line-shape functiorg,.(z) u, v = KK, Y related to

spectral densitie€,,(w). e(r) = E(1)e " + E*(1)” 4.1)
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wherewy is the carrier frequency of the exciting pulse d(d) Aq
is the envelope, which is slow compared to the carrier frequency Cyw) =7Clw) for n=1,2,..N (5.1)
wo. o> wo~L, wherety is the pulse duration. We also assume
thatty < t,, wheret, is the time scale of population relaxation
defined by the lowest nonzero mode of the master equation.
The other two important time scales characterizing the system 1
are the dephasing tinte, determined by the time scale Dft) Cu(w) = —AC(a)) (5.3)
andW(t), and the nuclear relaxation time scale We assume A
ta, th << t,, where the ratio ofy andt, may be arbitrary. The
limits tq < ty andt, < tq are known as spectral diffusion and Where
homogeneous limits respectivel.

We first consider the snapshot limit when< to < t,. The M @jn Gijn

j’D
Col®) = FC() (5.2)

signals are conveniently expressed in terms of the Fourier A= Z 2 (54)
transforms of the doorway and window functions: J
24 2
My dp
- =Y, 6
Dy(w) = [~ dré”"Dy(r) (4.2) ] 2
24 2
_ 00 0T meN dAA
W) = [~ dre“" W, (2) (4.3) P z+ (5.6)
]
Di(w) and Wi(w) represent the absorption and fluorescence 1N
spectra of thdth exciton, respectively. Substituting eq 4.1 into A= N An (5.7)
our expressions for the signals, we can then carry out the =
necessary integrations, which yields for the time- and frequency- _ 5 AwA
resolved signal Clo)= sz LA (5.8)
IE(r) 2 with dip = vAp/A1dj1 anddia = v AaAndin. For simplicity we
— © assume that the reorganization energies are uncorrelated (i.e.,
St wd ;Wk(wS) GV DK(wO)f—wdT }2 + each site has its own bath). This assumption may be relaxed

without a major complication. Alg,,(t) are now expressed
SNwg 1) (4.4) using a single functiomy(t) as

l vV
The time-resolved signal is similarly given by 9,,() = i{ o(t) (5.9)
0= S bl PGel) Delog [~ = 1) (2.5 "
= ; Uakl G ko) J_ AT ——— : o dow C(w) h
2 — G =AY/ 1 — no_
h gty = e [(1 cost)) cot 2kBT) +
The expressions for the short-time components can be simplified i(sin(wt) — wt)] (5.10)
further in the spectral diffusion limity < t, and for snapshot
excitation: tq < to < t,?” where they assume the form and
i - Tkag = 3 P Y 9 oln) PO T Ap —

18t = [ [*_dr' F(0,t,t, 7)€" — i

5 . E@? (010 F 01y 41dp] (5.11)

ZWAkl Dk(wo)]f_wdr" 5 (4.6)
h Ay = zwk(n) PYeMIdp = 01y Aidp + Oy Andal (5.12)
n
st), _ ® '3 s " oo Ao ot
SNwg ) =1 dr [~ de" F0,t, t+ 7", 7)€ 0 A= dg + Ay (5.13)
- [E@P _ . _
Zwk(ws) Dk(wo)]fimdf 4.7 In the high-temperature limitgT > AA, using egs 5.8 and
K2 5.10 we have

gty =ze ™+ At—1) for t=0 (5.14)

V. Spectral Diffusion Limit
P o(—) = g*(1) (5.15)
In this section, using the overdamped Brownian oscillator

model for the spectral densitjwe derive closed expressions Were

for the DW function,Dy(w), Wi(w), and the kerneKqq. We 23kgT 1
assume that all collective bath coordinates have the same ZE( 5 i —) (5.16)
relaxation rateA, A°A AA
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In the static limit, ZksT > (hA)?, using eqs 3.123.16 and 0.9 ‘ - '
5.11-5.16, we obtain ) .
2 |12 Q,— Qu +1y)°
Ko = qu(lﬁ) exp[—( g - 1 F Aqq) (5.17)
aqkeT, HqqkeT _
where é
C
_ 8
Fqcr = &
- B i 5 g
1 (R4 — Q) (Aqqqq lq’quq) AaqPaqaq T Aqqad) + =
h? Aqq
2kg T (Agqaq — Aq’q,qq)z :
?(;qu,q’q - T (5.18) 8 10

ith Figure 2. Time-resolved fluorescendégt) (which is proportional to
wit the population of the acceptor) vs scaled tiKtefor different values
of the number of sitedN, as indicated. Temperature is 300 K.

Qq = Q) — gqqq (5.19) Reorganization energies atg= 0.1 eV =1, 2, ...,N), ;p = 0.05
_ eV, andis = 0.05 eV. Nuclear relaxation ratk is 1 ps*. Electronic
Aag = Aagqa T Aqaaq ~ Aqqiaq ~ Aaaaq (5-20) structure is as followsEp = —1.25 eV,Ea = —2.29 eV,E; = —0.25

eV,En=-0.29eV,E,=0.0eV, forn=2,3,..,N — 1, andVy, =
; : ; " 0.025 eV form=n — 1 orm= n + 1; otherwiseVm,= 0. The carrier
Equations 5.1%#5.18 satisfy the detailed balance condition, frequency of the exciting pulsey is Quf (9 — 1.059 eV). The

Kaa/Kqq = exp[-(q — Qq)/keT]. In the same manner we population of the acceptor (eq 6.1) is plotted as well. Solid line: Time-
obtain resolved fluorescencét). Dashed line: eq 6.1.

2 \12 @, —h )2
o= 5] e - Cor e

42 |2 (Qp— Q + 1, — hw)?
W(w) ZﬂAkz(m) exp - ——

2 T T T T T T

(5.21)

YA -
(5.22) =
with <
_ A4
A= Mg (5.23) g
_ 9
Ak = j‘kkkk + }*Y,Y - Zikkv (5.24) ) ’
_ K
QA = QA - }‘Y,Y (5'25) 8 2 4 6 8 10 12 14 16 18 20

The complete expression for the rate matKyy for the ] Numl.oe.r of sites N )
t Figure 3. ET rate logo K (K is in ps™.) vs number of sitedN (the

overdamped Brownian oscillator spectral density, which is no distance between the donor and the acceptor). Parameters are the same
limited to the static limit, is given in Appendices B and C. as Figure 2. Solid line: log K. Dashed line: log K®%, Short dashed
line: logio K&UP) Dotted line: logo K29 Dash-dotted line: logo KEuP),

VI. Interplay or Tunneling and Sequential Transfer

The calculations presented in this section illustrate the range /= .dr' |E(z")|%h? are normalized to 1. Since typical nuclear
of parameters and time scales whereby the ET process can beelaxation time scales~1 ps) are much shorter than the ET
considered either direct (tunneling) or hopping type. We have time scale £ 1 ng in DNA, we neglect the short-time
used typical parameters for DNA charge transfer and varied component which decays to zero on the nuclear relaxation time
them over a broad range. These results show under whatscale. The lowest eigenvalue of the matiXwhose elements
conditions a DNA bridge acts as a quantum wire. For the areK,q) is zero and gives the thermal equilibrium distribution.

electronic parameters we uség = —1.25 eV,Epn = —2.29 The second eigenvalliedominates the relaxation to equilibrium
evV,E1 = —0.25eV,Ey=—0.29 eV,E, =0.0eVforn=2, 4t jong times. In Figure 2 the scaled tirk@ is used as an
3,..., V—1. Anearest neighbor hopping matrix elemept..1 abscissa. Since for these parameters population of the bridge

= 0.025 eV was assumed. The reorganization energieénare s negligible compared with the donor and acceptor, we expect
=0levp=12 ..,N) andip =1a=0.05eV. Nuclear o hopulation of the acceptpk(t) to be close to
relaxation rateA = 10%? s71, and the temperature is 300 K.
In Figure 2 we display the time-resolved fluorescence from
the acceptor calculated using eqgs 4.5 and-58.25 for varying Py(t) = pr(0)(1 — e‘K‘) (6.1)
numbers of sitedl. The carrier frequency of the exciting pulse
wo is Q1 = 1.059 eV. The ordinate coincides with the
population of the acceptor becaud@uax? 3Dk (wg), and with



Solvent Reorganization in Long-Range ET J. Phys. Chem. A, Vol. 102, No. 8, 1998247

exe| - 1 i
kT 0 ]
Py(e0) = 5 o (6.2) aE=oosev ]
ex;{— kﬁ) +e F{— k,T(i'r\l) o b o T ME=0IOSY ]
o ___AE=015 eV
D
Here the delocalized state that goestio site state in the limit _2 i AE=020eV
of V_m” = 0 is denoted by _ 2 st R AE=0.25 oV
Figure 2 shows that eq 6.1 indeed represents very well the — | \»_ 7777
fluorescence decay curve& can thus be interpreted as a sum X oo8F N\ e AE=030 &V
of the forward and backward ET rates. All time-resolved o I N ——
fluorescence curves are similar except for Me= 2 case (no S o AE=0.35 &V
bridge), where the two stated,[Jand |NC] are strongly mixed

. -12 L ' L t L L L L
compared with the other cases. Hereafter we refét &3 the > 4 8 8 10 12 14 18 18 20

ET rate. The variation of this rate with the number of sifés,
using the parameters as in Figure 2 is shown in Figure 3. To
analyze these results, we define the 2 superexchangé(sur)

Number of sites N

Figure 4. ET rate logo K (K is in ps %) vs number of sitedN (the
distance between the donor and the acceptor), for varying values of

matrix. the energy gapAE, as indicated. Other parameters are the same as
Figure 2.
(sup) (sup) —
quq1 quqN _ Kqul quqN (6 3) (E — E +Z )2
ke e =K Ky, ' KEP = Tyl?, [=—exg]— ————"| (6.7)
ANy ANAN hZAleBT 4/1leBT
We further introduce the sequential rate matiseed) o o 2 z | E-EF I
Kin'© = [Thal "o kBTCX B kT (6.8)
K§r¥=0 for (g, o) = (dh, Gy of @ ) = (Ga)  (6.4) "
KGP = —K§P (6.9)
KEIS;q)E Ky fora=d, (@ ) = (o, ay), H "
and @, ) = (cydy) (6.5) KRN = =K (6.10)
KEeD= KEe? forq=qf (6.6)  where
' [d=q) =
E,.=E,— 4, (6.11)
For N = 2 we defineK(uP) = K(ed) We define the superex- 1 =144 6.12
change and sequential ET rat&éuP) andK(sed) as the second e (6.12)
lowest eigenvalues oK©UP) and K(ea) respectively. These _ 1 1
guantities are plotted in Figure 3 as well. We see that for Tha = Vi1 " Vagg = E3V32E = E2V21 (6.13)

smallerN the superexchange transfer dominates, and for larger _ o

N the sequential transfer takes over. _ (Ey—E+ 4w’
To investigate the competition between the two mechanisms, E 1 YIS

we calculated the ET rate as a functior\yfvarying the energy

gap between the donor site and the first bridge dite,= E; Similarly, the perturbative sequential rate matk#ed is

— E;. We kept all bridge energies to be the sae= 0.0 eV given by

forn=2, 3, ...,N — 1, and the difference between the donor

and the acceptor energies is the same as Figure 2, sEitig (seq) ) pe (Ey— E; + 1,,)°
—AE andEy = —AE — 0.04 eV. Figure 4 shows that as the Kt = |Vl /h exp — AT
nn

(6.14)

2_ <
energy gapAE is increased, the superexchange rate curve Aanks T
becomes steeper, and the sequential transfer rate slows down. for n=n" (6.15)
The reorganization energyand temperatur& are also varied Kea) KED for = (6.16)
(Figures 5 and 6). Figure 7 displays the variation of the rate o= (Z ) n'n :
n"(n"=n

with bridge size on a logarithmic scale. The rate varieS=s
for largeN, where the exponert is not universal and depends  £qr N = 2 we defineKsuP) = K(e®. This perturbation theory

on the parameters. has been used to investigate the competition between the
We next investigate the effect of energetic disorder of the Superexchange and Sequentia| trandfe® The Superexchange

bridge sites.E, forn= 3, ...,N — 1 are modeled as independent ET rateKu) and the sequential ET rat€sed defined as the

random Gaussian variables whose average value is zero angecond lowest eigenvalues KfsuP) and K 59, respectively,

varianced = 2.5 x 1073 eV2. This static disorder is sufficient  are shown in Figure 8 as well. We note th&P is very close

to localize the exciton state within2 sites. Other parameters  to K(suP) andK(ed) is very close taK(ed) This is not the case

are identical to Figure 2. when the bridge eigenstates are delocalized, as illustrated in
At this point we would like to compare the present rates with Figure 3.

those calculated perturbatively in the electronic couphfig. Finally, the calculated time- and frequency-resolved fluores-

The perturbative X 2 superexchange rate matrix<k&ur) with cence is displayed in Figure 9. All parameters are the same as

matrix elements in Figure 2 except for the number of siteN, which is 10.
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Figure 5. Same as Figure 4, except that the reorganization energy  Figure 8. Same as Figure 2, but disorder is included in the bridge site
is varied, as indicated whedg =1 (n=1, 2, ...,N), Ap = A/2, andia

= A2.

LogioK (Kisinps™.)
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Number of sites N
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Figure 6. Same as Figure 4, except that the temperaiuievaried,

as indicated.

AE=0,

- T\

Q

£ S0

@

N L

4 I

SR R

o)) aA —
,,,,,,,,,,,,,,

— 7+

L L L L (

.05 eV =057

AE=0.15 eV @=0.81
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LogioN
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Figure 7. Same as Figure 4, but abscissa in logarithmic safgolid
line: logio K. Dashed line:—a logio N. The exponents. are listed in

this figure.

Assuming thatNth electronic state is well-localized on the

acceptor, time- and frequency-resolved
be approximated as,

St 09 = 1(t) W)

fluoresc&(ices) can

(6.17)

whereW(wy) is fluorescence from an isolated acceptor,

energies. Eaclic, for n = 2, 3, ...,N — 1 has Gaussian distribution
with average 0.0 and variance 0.05 eV.

0.06

Ki=2.0
0.05 | Kr=1.6 :
Ki=1.2
0.04 |
—_ Kt=0.8
3 003f
=
A
0.02 | Kt=0.4 1
0.01
0 : ~ '
015 01  -0.05 0 005 01 015
Ws-Wgy

Figure 9. Time- and frequency-resolved fluorescerge ws). The
parameters are the same as in Figure 2, but the number of\sites

10. The abscissa ifi(ws — wan), Where wan is the frequency of
maximum fluorescence from an isolated acceptor, and the unit of the
ordinate is arbitrary. Timéis varied from 0 to ZK~* whereK = 0.29
[us™1], as indicated. Solid line: eq 4.4. Dashed line: the approximation

(eq 6.17).

B ﬂhz 1/2 (thN _ h(UQZ
Wy = (AANkBT) ex YR

with /IAN = /1A + /IN — 24/ lAlN andthN = (QA - /IA) - (QN
— AN) + Aan. In general, the fluorescence line shape varies
with time and may not be factorized in the form of eq 6.17.

(6.18)

VII. Discussion

In the present theory the ET system is modeled by a
Hamiltonian describing localized electronic states in the site
representation, coupled to each other and to harmonic nuclear
degrees freedom. To include higher order contributions in the
electronic couplings among sites, the eigenstates of the electronic
part of Hamiltonian are used as a basis set. In this representation
the nuclei couple to diagonal as well as off-diagonal elements
of the electronic Hamiltonian. Only the latter couplings are
treated perturbatively. This treatment of nuclear modes incor-
porates the reorganization energy as well as memory effects of
nuclear modes. The photoexcitation of the donor and the
resulting fluorescence are formulated microscopically, without
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invoking the common assumption that the excited donor state of Scientific Research, and the NSF Center for Photoinduced
is equilibrated initially. Using the present theory, the effects Charge Transfer.
of the bridge size, the energy gap between the donor/acceptor
and the bridge, the reorganization energies, and the temperature
on the compe_tition _between the superexchange and sequentiaAppendiX A: Quantities Appearing in Eq 3.8
transfer were investigated, and the time- and frequency-resolved
fluorescence was calculated.

Effects of solvation on long-range ET in DNA have been
studied recently in ref 19 using the density matrix apprdéch.
A single high-frequency vibrational oscillator was coupled to L 2 i
the electronic states of the donor/bridge/acceptor systems. The Dy(7) = tpx ex;{— ﬁgkf - gkkkk(f)] (A1)
oscillator and the electronic states were then coupled to other

nuclear bath modes. Eliminating these external degrees of\\k(7) =4 ZeXF{— i_(g — Q)7+ 21(,1 — 2 )T —
freedom and applying the Redfield equation of motion, the time « Ak RYA ) Ry 0o

The auxiliary functions appearing in eq 3.8 are given by

evolution of ET in DNA including nuclear dynamics was —

calculated. The Redfield equation retains terms only up to Guaal®) ~ Gr®) + 20ue7)| (A2)

second order in the systenbath coupling, and the bath time . e e(r') e(r")

scale is assumed to be much shorter than the ET processSS‘)(t, 7) =f7 dt’ﬁ dr"'F (", t+ 7, t, 7')— -

Consequently, the reorganization energy (which originates from ” ” h h

slow nuclear modes) and the finite time scale of the nuclear ; » e(t') e(r")

modes except for the high-frequency mode were not included. G(T)Zf,mdf'f,mdf” W(r) D7’ — 7'")— -
Finally we comment on the relation between the present h o h

calculations which use the delocalized electronic basis set and €(t') (")

t+7 T
the direct perturbative calculation of the rate in intermolecular 9(_T)Zﬁm df’ﬁwdfu WE(T) D' — T”)?T (A3)
electronic coupling. We expect the two to be similar if the
coupling is weak|Q2;, — Q| > V. Expanding the transfer
rate between thegth andq'th excitons inVyy, we obtain where the correlation functiof, defined by eq 3.7 is calculated
under the assumption thiel; = 0 and has the forfd

Ay — A, \2
Kag =L E—E | K (7.1)
Fo(ty 73, 7,5, 7)) =
where g#DWDK#AWAK exp[— f I(j(),Y(TA' Tg, Tp Ty)] X
Vm 2 j‘[hz 1/2 | | |
K. =l—]|————— exd — —Qut, —17,) — —Qu(t,—7,) — —Qu(t,— T
nn A (ln—i-ﬂ.ny)kBT X A k( 2 1) A A( 3 2) A k( 4 3)
_ {(En - ln) - (En’ - ln) + ;Ln + ;Ln} (7.2) (A4)
4@, + A)ks T '
and
is the Marcus rate between thth andn'th states. Theth and
g'th states go to theth andn'th states, respectively, in the dgﬂ @)
Vo = O limit. Here A,,=—hlim Im['—v] (A5)
s T—00 dr
Agqaq = *n (7.3)
Aqqq = (7.4) The functionf @ in eq A4 is given by
rewe = |\ 2 42 75 @)
daq9 ~ \E —E, Ay + 2n) (7.5) fe(Tar T3 T2 T1) = QT2 = T2) — Ger(T2 — 7)) +
v Oz — 71) ~ Gk (Ta — 72) T G (T4 — 71) —
Y ﬁln (7.6) (T3 — 72) F Gk (T3 = 72) — Gk (s — 7) +
" " (T3 = 72) — G (T3 = 7o) + Qe AT — 7p) —
Vi Ok (Ta = T3) T Oy k(s — T3) (A6)
Aqq.aq = ﬁl"' (7.7 ' ’
Agg = Aot Ay (7.8)

Appendix B: ET Rates for a Finite Solvent Time Scale

When Vn, is weak, the two perturbation theories give similar
expressions for the rate except for different prefactors. The two fu
expressions coincide wheky — Eq| > Ay — 4.

In this Appendix we present expressions for doorway/window
nctions and the kernéyq for the overdamped Brownian
oscillator model for the spectral density, which do not assume
the static limit. A confluent hypergeometric function is used

Acknowledgment. We gratefully acknowledge the support  t0 derive the expressions.
of the National Science Foundation, the U.S. Air Force Office Forz = 0 we have
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L 2 . Aok
Dy (7) = upy” exy —iop — Tg(f) (B1)

2
\NE(T) = #Ak2 exf{_ia’AkT - TAKQ(T)] (B2)

Kig(1) = (Agqe "+ By "+ Cy) x
ex;{—lw g(r)] (B3)
where
_ Q
a)Dk = ? (B4)
Aok = Ageu (B5)
_ 1 2
Wpk = ﬁ(QA = Q) - ﬁ(}“kk,Y - Akkkk) (B6)
Aak= A T Avy — 2y (B7)
_ 1 2
Daq = p(Rq ~ ) T 2lqq.qq ~ Aaaqq)  (B8)
/_qu = ’qu,qq + ;Lq’q’,q’q’ a iq’q’,qq - qu,q’q’ (B9)
Z,
Agg=— /1_2A ("Lq’q,q'q' - Aq’q,qq)(}“q’q’,qc{ - ’qu,qd) (B10)

By = A% qqqq + ZA(/l

z
A A aq dodd Aqqad X

Okada et al.

aq B
1 > A
2Rg A Zj = +
g o[ Aaq
A—z+2A+|w —Z+iwgglA+3
A A m
B 1 > A
7 qd ”ZO ’qu
A—z—l—A—Hw —Z+iDgglA+2
A A Jm
Mg )m
. 1 © a0
R ad ”ZO /_qu
A—z +id —Ztidg/A+1
y) A m
for g=q (B15)
q'=q
=— Z Keyq for g=d (B16)
q
Here @)m is defined as

@,=1 (B17)
@n=a@+1)...@a+tm—1) (B18)

Appendix C: Alternative Expressions for ET Rates

IAA(}“qq ad ~ *aqaq) T2 R qqqq] + A(qu' ad ~ Aaqaq) X

In this section alternative expressions for ET rates which are
[;LA(Aqqqq Aqqqd T2 A qqqq] (B11)

not limited to the static limit are derived using a Taylor
expansion for an exponential function in another exponential
function that appears in the expressions of DW functions and

Coq = liA(quqq Aqaad T hqqqq]

(A G0 ~ Raqar) + 2faae] (B12)
Using eqs B+-B12, we obtaid’3!

Dyw) =

2Reuy

- — (B13)
Apk WZO(’DK

ATZ —i(w — @y —2- i(w — @p)IA + 1

W) =

2Reuy!

(B14)
Aak . =0 Aak .
ATZ —i(w — @pW 72— i(w— @A+ 1

the kernelKq (eqs BE-B3).
Forz = 0 we have

DI;Z(T) = :uDkz explap,r + kae_AT — by (C1)
o0 b“
= uple >y — - expllag, — nA)T] (C2)
pA
WL (7) = 2 explags + bye ™ — by (C3)
© n
_ 2 —bax ik _
=Upc € iy exp[@a — nA)7] (C4)

n=|

A= bygl(Agqe > +
Byq€ "+ Cyy) (C5)

Kgq(7) = expgyt + byge

o bn
=g P Z)— exp[@yy — NA)TI(Aqe " +

By€ "+ Cqq) (C6)

where
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G =~ Iﬁ ;ka,kk/'{ (C7)
by = _ikkkk/% (C8)
A=~ Fi_L(QA - Q)+ 2;—1(1,(,0( = Aagad T (T geac —

Ivy + 2ge)TA (C9)
bak= (— Ak = Avy + ZikKY)% (C10)

g = h(Q Qq) — ( qq.qq ~ *aaqq) T agaq T
Aqqqq ~ Aqqaq T qqqq)iA (C11)
bag = ~(ggaa t Aaqaq ~ Aadaa ’qu,dq’);% (C12)

Using egs B16-B12 and C1+C12, we obtain

b _ 2 —b ka 1
@) = —2Reup’e Z)_
=N ap, —nNAtiw
(C13)
Wi(0) = —2Rep, 26 S i !
w)=— —_
“ Ha =nh ag, — nNA +iw
(C14)
1
K= —2Re e g Aqq +
&yn! (n+2)A
1
+C for q=d (C15)
qqaqq (n+ DA qqaqcr - nA)
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